Learning Goals

- 1. To understand that you must put brackets around the numbers you plug into an equation.
- 2. To understand that a square root sign should be treated the same way as a bracket.
- 3. To understand that you must always follow BEDMAS when solving expressions.

1.3 - Order of Operations with Powers (BEDMAS)

Note the difference on how each power is calculated.

 -2^{6} means $-1 \times (2 \times 2 \times 2 \times 2 \times 2 \times 2)$

Reminders

- 1. Don't use the subtraction key as a negative sign on the calculator.
- 2. When a square root sign covers an expression, it contains the expression just like brackets.
- 3. When there are multiple brackets, complete the operations in the inner brackets first.
- 4. Always follow BEDMAS when solving expressions.

Example One

Solve.

$$-2^{4} + (-1 - 1)^{3} + 5(-2)^{4}$$
 BEDMAS

$$= -\lambda^{4} + (-\lambda)^{3} + 5(-\lambda)^{4}$$

= -16 - 8 + 5 (16)
= -16 - 8 + 80
= 56

<u>Example Two</u>

Solve.

$$[(2+3) \times 3]^2$$

BEDMAS
1. $[(5) \times 3]^2$
2. $[15]^2$
3. 225

Example Three

Solve.

$$-3^{4} + [-2 - (-4)^{2}] + \sqrt{16}$$

BEDMAS
$$= -3^{4} + [-2 - 16] + \sqrt{16}$$

$$= -3^{4} + [-18] + \sqrt{16}$$

$$= -3^{4} + [-18] + \sqrt{16}$$

$$= -3^{4} + [-18] + 4$$

$$= -81 - 18 + 4$$

$$= -95$$

-

<u>Note</u>: Always put brackets around a number when plugging it in for a variable.

<u>Complete</u>: p. 35 - 36 #4, 6, 8def, 11cef.