Learning Goals

1. To understand how the location of a negative sign affects the value of powers with rational bases.
2. To understand how to follow BEDMAS with rational numbers.
3. To understand how to plug in a rational number in place of a variable.
1.6 - Powers of Rational Numbers

Key Ideas

1. $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$

For example, $\left(\frac{2}{3}\right)^{3}=\frac{2^{3}}{3^{3}}=\frac{8}{27}$
2. $-\left(\frac{a}{b}\right)^{n}=-\left(\frac{a}{b}\right)\left(\frac{a}{b}\right) \cdots \cdot$

$$
\text { For example, } \begin{aligned}
-\left(\frac{2}{3}\right)^{3} & =-1\left(\frac{2}{3} \times \frac{2}{3} \times \frac{2}{3}\right) \\
& =\frac{-1}{8}\left(\frac{8}{27}\right) \\
& =\frac{-8}{27}
\end{aligned}
$$

3. $\left(-\frac{a}{b}\right)^{n}=\left(\frac{-a}{b}\right)\left(\frac{-a}{b}\right) \cdots \cdot$

For example, $\left(\frac{-2}{3}\right)^{3}=\left(\frac{-2}{3}\right) \times\left(\frac{-2}{3}\right) \times\left(\frac{-2}{3}\right)$

$$
=\frac{-8}{27}
$$

Remember to follow order of operations (BEDMAS) when solving an equation.

Example One
Calculate. $(-3.2)^{2}-2(-6.5)^{3}$

$$
\begin{aligned}
& =10.24-2(-274.625) \\
& =10.24+549.25 \text { or } 10.24-(-549.25) \\
& =559.49
\end{aligned}
$$

$$
=559.49
$$

$$
\begin{aligned}
& \frac{\text { Example Two }}{\text { Solve. }} \quad-2 \frac{2}{3}+\left(-1 \frac{3}{4}-\frac{5}{6}\right)^{2} \\
& \text { 1. Solve for brackets } \\
& \left(\frac{-766}{46}-\frac{5}{64}\right)^{\prime} \\
& =\frac{-42}{24}-\frac{20}{24} \\
& =\frac{-62}{24} \\
& \text { 2. Apply the exponent. } \\
& \quad\left(\frac{-62}{24}\right)^{2}=\frac{3844}{576} \\
& \text { 3. Add } \\
& -\frac{2 \frac{2}{3}}{3}+\frac{3844}{516} \\
& =\frac{-\frac{8042}{3}+\frac{3844}{576}}{=} \\
& =\frac{-1536}{576}+\frac{3844}{576} \\
& =\frac{2308}{576} \\
& \text { 4. Report as a mixed number. } \\
& \\
& 4 \frac{4}{576}=4 \frac{1}{144}
\end{aligned}
$$

When plugging a fraction into an equation with existing whole numbers, put a number one under any whole number to make it look like a fraction and then proceed by multiplying/dividing or finding a common denominator to add/subtract.

Example Three

Evaluate the following expression: $x^{2}+x-3$, where $x=4^{3}$.

1. Pugn $4 \frac{3}{5}$ for x

$$
\left(4 \frac{3}{5}\right)^{2}+\left(4 \frac{3}{5}\right)-3
$$

2. Charge all fractonsto imperper.

$$
\left(\frac{28}{5}\right)^{2}+\left(\frac{28}{5}\right)-3
$$

3. Make all whok numbers look like a
fraction by outing a ore wimeneath it.

$$
\left(\frac{23}{5}\right)^{2}+\left(\frac{23}{5}\right)-\frac{3}{1}
$$

4. Follow BEDMAS and solve.

$$
\begin{aligned}
& \frac{529}{25}+\frac{235}{5 \times 5}-\frac{3 \times 5}{1} \times \times 5 \\
= & \frac{529}{25}+\frac{115}{25}-\frac{75}{25} \\
= & \frac{569}{25}
\end{aligned}
$$

5. Report as a mued number.

$$
22 \frac{\pi}{25}
$$

Complete: p. 63-64 \#5, 6ace, 13ad.

