3.1 Relations

Example One

The cost of a pizza with tomato sauce and cheese is $\$ 9.00$. It costs $\$ 0.75$ for each additional topping.
a) Create a table of values from 0-8 toppings.

Independent Variable - The variable whose value you choose. Usually placed on the left in a table and on the horizontal axis on a graph.

Dependent Variable - The variable whose value you calculate. Usually placed on the right in a table and on the vertical axis on a graph.
b) Graph this relation. Label the dependent and independent variable.

Note: The points in this graph are joined with a broken line since we cannot order a fraction of pizza toppings. The number of toppings ordered is an example of discrete data.
usually whole numbers.
Discrete Data - A set of data that cannot be broken into smaller parts.
c) Represent the relation with an algebraic expression or rule.

Note:
DEPENDENT VARIABLE $=$ variable cost \times INDEPENDENT VARIABLE + fixed cos \dagger

$$
\begin{aligned}
& \text { Cost }=0.75 \times \text { \#of toppings }+9 \\
& C=0.75 n+9 \\
& C=\text { cost } \\
& n=\text { \#t of toppings }
\end{aligned}
$$

Example Two
Rhonda bought sesame snacks at the bulk food store. The cost was $\$ 1.10$ per 100g.
a) Determine the cost of 360 g using a graph.

Hint: create a table first.

Mass	Cost
100	$\# 1.10$
200	$\$ 2.20$
300	$\$ 3.30$
400	$\$ 4.40$

Note: The points in this graph are joined with a solid line. The number of grams purchased is an example of continuous data.
decimal numbers make sense. Continuous Data - A set of data that can be broken down into smaller and smaller parts and still have meaning.

To solve for 360 g you will interpolate.
Interpolate - To estimate a value between two known values.
b) Create an equation to determine the cost of 360 g .

$$
\text { Cost }=0.011 \times \text { Mass }+0
$$

Complete: p. 146-149 \#3, 5, 6 (use a table), 8, 10, 14.

