Learning Goals

- 1. To understand what is meant by the slope of a line.
- 2. To understand how to use the formula to calculate the slope of a line.
- 3. To be able to calculate first differences.
- 4. To understand the purpose of the first difference calculation.
- 5. In the context of a real-life question, to understand what the slope and y- intercept of a line mean.

3.3 Slope and First Differences

<u>Slope (m)</u> - a measure used to describe the steepness of a line.

The formula for the slope of a line is:

The slope of a line is:

$$\frac{rise}{run} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} \quad (1, 7) \quad (-2, 8) \quad (-2,$$

Example One

Determine the slope of the line that passes through the

<u>First Differences</u> - the difference between consecutive yvalues in a table if the difference between the x-values is constant.

If first differences are constant, then the relation is linear. OR

If BOTH the x and y-values skip count by a constant number than the relation is linear.

<u>Note</u>: slope = rate of change = first difference

All of the above words mean the same thing.

Example Two

Is the following relation linear? How do you know?

Х	У	1 st Difference
3	12	
4	15	15-12= 3
5	18	18-15 = 3
6	21	2-15=3
		is linear b/c 1 st differences

What is the rate of change for the linear relation above?

rate of change =
$$\frac{\Delta y}{\Delta x}$$

 $M = \frac{3}{(}$

Example Three

Use the title and axis labels to tell what the y-intercept and slope mean.

<u>Complete</u>: p. 156 - 159 #1 - 3, 7, 8, 11(graph ace), 13.