Learning Goals

1. To understand graphically what one solution looks like.
2. To understand graphically what no solution looks like.
3. To understand graphically what an infinite number of solutions look like.
4. For a word problem, to be able to interpret what the intersection of the two lines means in the context of the question.

4.5 Solving Linear Systems Graphically

System of Linear Equations - a set of equations (at leas \dagger two) that represent linear relations between the same two variables.

A system of linear equations can have:

Example One
Determine the number of solutions for the following:

\therefore no solution. The lines are parallel b / c they both have the same slope.

$$
y=x-23
$$

Staring pt: -2
Slope: $\frac{1}{1}$ (up)

$$
\begin{aligned}
& y=\frac{2 x}{2}-\frac{4}{2} \\
& y=x-2
\end{aligned}
$$

\therefore infinite \# of solution. Equations are exactly the same.

Example Two
Mary Claire is choosing between 2 music downloading clubs.
The first club charges a member of $\$ 5$ plus $\$ 2.50 /$ song while the second club charges a membership of $\$ 3$ plus \$3/song.
a) Write the equations that represents both clubs.

$$
\begin{array}{ll}
C=2.5 s+5 & C=\text { cost } \\
C=3 s+3 & s=\text { of songs }
\end{array}
$$

b) Which club should Mary Claire join?

Note: You know your intersection point is correct if you plug your point into both equations and $L S=R S$.

Buy from $C=3 s+3$

$$
s=4
$$

Buy from either $5>4$
Buy from $C=2.5 s+5$

Complete: p. 245-247 \#2, 6, plus question below.

Look at the graph below and describe the companies financial situation. At what point are they making a profit? When do they break-even?

Sketch the graph below to help you answer the questions in \#2, p. 245.

