Learning Goals

1. To determine the equation of a line when given 2 points on a line.
2. To determine the equation of a line when given 1 point and the y-intercept.
3. To understand that the only information required for the equation of a line is the slope (m) and the y intercept (b).

5.4 - Using Points to Determine the Equation of a Line

Key Ideas: You can determine the equation of a line in the form $y=m x+b$ if:

1. You know two points on the line, or:
2. One point and the slope.

Given Two Points

1. Solve for the slope using the equation, $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
2. Plug one point in for x and y in the equation, $y=m x+b$ and solve (isolate) for "b".
3. Plug your calculated values for " m " and " b " into the equation $y=m x+b$.

Example One

Determine the equation of the line that passes through the points $A(2,9)$ and $B(1,13)$.

1. Solve for the slope (m).

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{13-9}{1-2} \\
& =\frac{4}{-1} \\
& =-4
\end{aligned}
$$

2. Solve for " b " by plugging in for $x \times y$.

$$
\begin{aligned}
& y=-4 x+b \quad B(1,13) \\
& 13=-4(1)+b \\
& 13=-4)+b \\
& =+4
\end{aligned}
$$

$$
17=b
$$

3. Plug" m " " b " into the eq.

$$
y=-4 x+17
$$

Given One Point and the Slope

1. Plug the given slope into the equation $y=m x+b$ as well as the one point for x and y to solve for " b ".
2. Plug your value for m and calculated value for b into the equation $y=m x+b$.

Example Two
Determine the equation of the line that has a slope of 4 and passes through the point $(2,6)$.

1. Solve for " b " by plugging in for $x a y$.

$$
\begin{aligned}
& y=m x+b \\
& m=4 \text { (given in question) } \\
& 6=4(2)+b \\
& b=8+b \\
&-2=b
\end{aligned}
$$

2. Plug in " m " "b" in to the eq.

$$
y=4 x-2
$$

```
Example Three
Ken's Kanine Kennel costs \(\$ 71\) for 2 dogs and \(\$ 113\) for 5
dogs. Julie wants to know the daily cost to board her 3
dogs. Determine the equation that describes the
relationship between the number of dogs and the daily
boarding cost. Remember to include what your variables
represent. \((x, y)\) yd Dependent
    (1) 5
\(A(2,7) \quad B(5,1,13)\)
1. Calculate the slope
        \(m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)
            \(=\frac{113-71}{5-2}\)
            - \(\frac{42}{3}\)
            - 14
2. Solve for "b" by plunging in for \(x+y\).
\(A(2,71) \quad y-m x+b\)
                                    \(71=14(2)+b\)
                                    \(71=(28)+b\)
                                    -28
\(43-b\)
3. Plug" " \(m\) " " " \(b\) " into the eqn.
            \(y=14 x+43\)
    \(y=\) cost
    \(x=\) of dogs
4. Plug \(x=3\) into eq n + solve for \(y\).
        \(y=14(3)+43\)
            85
```

Complete: p. 290-292\#1-4, 5ac, ba, 7a, 11.

