

Annotation: Problem-solving process demonstrates identification of all important elements of the problem; values of x and y are correct with supporting values shown in diagram and explanation is evidence of understanding of geometric properties.

Learning Goals

- 1. To understand that with a given perimeter, the largest area occurs when the shape is a square.
- 2. To understand that with a given area, the smallest perimeter occurs when the shape is a square.
- 3. To understand that with a 3-sided rectangle the largest area and smallest perimeter is achieved when the length dimension is half the perimeter and the width is a quarter of the perimeter.

8.1 - Determining Optimum Area and Perimeter

<u>**Optimum</u></u> - the most desirable of a number of possible choices.**</u>

<u>Investigation #1 - Maximum Area</u>

With a partner create as many different rectangles possible using ALL of the 16 toothpicks. Record the length, width, perimeter and area of each rectangle in the table below.

<u>Note</u>: A rectangle with the dimensions of 1×8 is the same as 8×1 for this experiment.

Length	Width	Area (squared units)	Perimeter (units)
6	2	125	16
5	3	15	ib
7	1	7	16
4	Ч	(b)	16
-	•		

What dimensions give the maximum (greatest/largest) area? What is the shape?

4x4. The square gives the max area.

<u>Conclusion re: Maximum Area</u> For a given perimeter, the max area occurs when the shape is a square or when the length + width are closest in value.

Investigation #2 - Minimum Perimeter

Eric plans to build a storage shed with a floor area of 60m². He wants to use the least amount of materials. So, Eric needs the least perimeter for the floor. He will use 60 square patio stones, each with an area of 1m². Below are some rectangles that represent floors with an area of 60m².

In the table below, record the dimensions and perimeters of the rectangles above.

Length	Width	Area (m²)	Perimeter (m)
60	1	60	122
30	a	60	64
20	3	60	46
15	4	60	38
12	5	60	34
10	Ь	60	3a

What dimensions give the minimum perimeter? Comment of the shape of this rectangle.

IDXb. A rectangle but the closest of all shapes to being a square.

Conclusion re: Minimum Perimeter

For a given area, the minimum perimeter occurs when the shape is a square or When the length & width are close in value.

3-Sided Rectangles

A rectangle with a border on three sides has a maximum area and a minimum perimeter when the side opposite the wall is twice as long of the other two sides.

<u>Note</u>: For 3-sided rectangles, maximum area/minimum perimeter is achieved when $l = P \div 2$ and $w = P \div 4$, where lis the longest side and w represents each of the two short sides.

Key Formulas

- 1. The perimeter formula for a square is: P = 45.
- 2. The area formula for a square is: A = 5

Example One

What is the maximum area of a rectangle with a perimeter of 30 m?

<u>Hint</u>: Always start with what you are given (i.e. perimeter vs. area) in the question.

Example Two

= Square What is the minimum perimeter for a rectangle with an area of 40 m^2 ?

Example Three

Woody's horticulture club is exhibiting at the city garden show. Each garden must be bordered by 18.0 m of wood against a brick display wall. What dimensions will maximize the area of the garden?

<u>Complete</u>: p. 431 - 433 #1 - 4, 7, 10.

