Toy Sailboats

Annotation:
Student demonstrates a thorough understanding of the concepts; provides calculation for height that apples the Pythagorean Theorem correctly and uses this value accurately to determine required area.
8.5 - Volume of Pyramids and Cones

The volume of a pyramid is $1 / 3$ the volume of a prism with an identical base and height.
http://download.elearningontario.ca/repository/1107210000/MPM1DCU05A05/mme/U5A5 _volume_of_pyramids_cones_and_spheres/VolumeOfPyramidsAndCones.html

The formula for the volume of a pyramid is $V=\frac{1}{3} A h$, where A is the area of its base and h is the height.

$$
\begin{aligned}
& V_{\text {pranand }}=\left(A_{\text {base }} \times h\right) \div 3 \\
& V_{\text {prism } m}=A_{\text {bax }} \times h
\end{aligned}
$$

Example One
Calculate the volume of a pyramid with the height of 8.1 cm and the base dimensions as shown.

$$
V_{\text {brand }}=\left(A_{\text {wax }} \times h\right) \div 3
$$

1. Calculate ara of bose

$$
\begin{aligned}
A & =[(b \times h) \div 2] \times 5 \\
& =[(5.8 \times 4) \div 2] \times 5 \\
& =58 \mathrm{~cm}^{2}
\end{aligned}
$$

2. Calculate volume of pyramid

$$
\begin{aligned}
V & =\left(A_{\text {base }} \times h\right) \div 3 \\
& =(58 \times 8.1) \div 3 \\
& =156.6 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of a cone is $1 / 3$ the volume of a cylinder with an identical base and height.
http://download.elearningontario.ca/repository/1107210000/MPM1DCU05A05/mme/U5A5 _volume_of_pyramids_cones_and_spheres/VolumeOfPyramidsAndCones.html

The formula for the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$ where r is the radius of its base and h is its height.

$$
\begin{aligned}
& V_{\text {cone }}=\left(\pi r^{2} h\right) \div 3 \\
& V_{\text {cylinder }}=\left(\pi r^{2} h\right)
\end{aligned}
$$

Example Two

A conical paper cup has a radius of 4 cm and a height of 10 cm . A cylindrical glass has a radius of 4 cm and a height of 20 cm . How many times do you need to fill the paper cup and pour it into the glass to fill the glass?

1. Volume of a Cone $\quad V=\left(\pi r^{2} h\right) \div 3 \quad$ nom

$$
=(\pi 40) \div 3
$$

$$
=167.5 \mathrm{~cm}^{3}
$$

2. Volume of a Cylinder

$$
\begin{aligned}
& =\pi(4)^{2} 20 \\
& =1005.3 \mathrm{~cm}^{3}
\end{aligned}
$$

3. Number of Cones

$$
\begin{aligned}
\text { \# of cones } & =V_{\text {chunder }} \div V_{\text {cone }} \\
& =1005.3 \div 167.5 \\
& =6 \text { cones }
\end{aligned}
$$

Complete: p. 464-465\#1-3,6,7.

