Learning Goals

- 1. To understand that optimum surface area and volume occur when the prism is a cube and for a cylinder when the diameter = height.
- 2. To be able to calculate the surface area of a cube when given its volume.
- 3. To be able to calculate the volume of a cube when given its surface area.
- 4. To be able to calculate the surface area of cylinder when given its volume.
- 5. To be able to calculate the volume of a cylinder when given its surface area.
- 6. To be able to calculate the dimensions of both a cube and cylinder.

8.8 Optimum Volume and Surface Area

Rectangular Prism

The **minimum surface area** and/or the **maximum volume** in a rectangular prism <u>always</u> occurs when the prism is a **CUBE**.

147 (1÷3)

Volume and Surface Area Formulas for a Cube

V =
$$s^3$$
, where $s = V^{\frac{1}{3}}$
SA = s^3 where $s = \sqrt{\frac{SA}{6}}$

Example One

Determine the <u>dimensions</u> and <u>maximum volume</u> of a squarebased prism with a surface area of 600 cm^2 .

Plug SA into formula and solve for "s".
 SA = 65²
 600 = 65²
 100 = 15³
 s = 10 into volume formula
 V = 5³
 = 10³
 = 10³
 3 State the dimensions
 10 cm × 10 cm × 10 cm

Example Two

Determine the <u>dimensions</u> and <u>minimum surface area</u> of a cube with a volume of 10 648 cm^3 .

1. Plug in volume + solve for "s".

$$V = 5^{3}$$

(10 648)=(5³)⁴5
 $S = 10 648^{45}$
 $S = 22cm$
 $S = V^{45}$
 $= 10 648^{45}$
 $= 22cm$
 $S = V^{45}$
 $= 10 648^{45}$
 $= 22cm$
 $S = 0.648^{45}$
 $= 22cm$
 $= 10 648^{45}$
 $= 22cm$
 $= 22cm$
 $= 10 648^{45}$
 $= 22cm$
 $= 22cm$
 $= 10 648^{45}$
 $= 22cm$
 $=$

<u>Cylinder</u>

The minimum surface area and/or the maximum volume in a cylinder <u>always</u> occurs when the **DIAMETER** of the cylinder **EQUALS** the **HEIGHT** (i.e. d = h or 2r = h).

Volume and Surface Area Formulas for a Cylinder

V =
$$2\pi r^3$$
, where $r = \left(\frac{V}{2\pi}\right)^{\frac{1}{3}}$, and h = $2r$
SA = $6\pi r^2$, where $r = \sqrt{\frac{SA}{6\pi}}$, and h = $2r$

<u>Example Three</u>

Determine the <u>dimensions</u> and <u>maximum volume</u> of a cylinder with a surface area of 1884 cm^2 .

1. Plug in SA \neq solve for "r." $\sqrt{1884} = \sqrt{6\pi}$ $r = \sqrt{1884}$ $r = \sqrt{1884}$ $1884 \div (6x3/4) = n + er$

r= 10cm

2. Plug in r= 10 + solve for volume.

3 State the dimensions.

hxd , h= ar 20 cm x 20 cm d= ar

<u>Example Four</u>

Determine the <u>dimensions</u> and <u>minimum surface area</u> of a cylinder with a volume of 6400 cm³.

1. Plug n volume * solve for "r".

$$V = \lambda \pi r^{3}$$

 $6400 = \lambda \pi r^{3}$
 $r = (6400)^{1/3} \times Use the radius
formula.
 $r = 10.06 \text{ cm}$$

On your calculator...

$$(6400 \div (2\pi))$$
 $\mathbb{Y}^{\mathbb{Y}}$ $(1\div 3)$

2 Plug r= 10.06 into SA formula.

3. State the dimensions.

<u>Complete</u>: p. 481 # 1 - 5 (all).