Learning Goals

1. To understand that optimum surface area and volume occur when the prism is a cube and for a cylinder when the diameter $=$ height.
2. To be able to calculate the surface area of a cube when given its volume.
3. To be able to calculate the volume of a cube when given its surface area.
4. To be able to calculate the surface area of cylinder when given its volume.
5. To be able to calculate the volume of a cylinder when given its surface area.
6. To be able to calculate the dimensions of both a cube and cylinder.
8.8 Optimum Volume and Surface Area

Rectangular Prism
The minimum surface area and/or the maximum volume in a rectangular prism always occurs when the prism is a CUBE.

Volume and Surface Area Formulas for a Cube

$$
\begin{aligned}
& V=s^{3} \text {, where } s=V^{\frac{1}{3}} \\
& \sqrt{\frac{S A}{6}}=\sqrt{6 s} \text { where } s=\sqrt{\frac{s A}{6}}
\end{aligned} \quad V y^{4}(1 \div 3)
$$

Example One
Determine the dimensions and maximum volume of a squarebased prism with a surface area of $600 \mathrm{~cm}^{2}$.

1. Plug SA into formula and solve for "s".

$$
\begin{aligned}
S A & =6 \mathrm{~s}^{2} \\
\frac{600}{6} & =\frac{6 s^{2}}{4} \\
\sqrt{100} & =\sqrt{s} \\
S & =10 \mathrm{~cm}
\end{aligned}
$$

2. Plug $s=10$ into volume formula.

$$
\begin{aligned}
V & =s^{3} \\
& =10^{3} \\
& =1000 \mathrm{~cm}^{3}
\end{aligned}
$$

3. State the dimensions.

$$
10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}
$$

Example Two
Determine the dimensions and minimum surface area of a cube with a volume of $10648 \mathrm{~cm}^{3}$.

1. Plug in volume + solve for "s".

$$
\begin{aligned}
V & =s^{3} \\
(10648)^{\frac{1}{2}} & =\left(s^{3}\right)^{\frac{1}{3}} \\
S & =10648^{1 / 3} \quad 10648 \sqrt[y^{7}]{(1 \div 3)} \\
S & =22 \mathrm{~cm} \\
S & =V^{1 / 3} \\
& =10648^{\frac{1}{3}} \\
& =22 \mathrm{~cm}
\end{aligned}
$$

2. Plug $s=22$ into $S A$ formula.

$$
\begin{aligned}
S A & =6 s^{2} \\
& =6(2 \lambda)^{2} \\
& =2904 \mathrm{~cm}^{2}
\end{aligned}
$$

Cylinder

The minimum surface area and/or the maximum volume in a cylinder always occurs when the DIAMETER of the cylinder EQUALS the HEIGHT (ie. $d=h$ or $2 r=h$).

Volume and Surface Area Formulas for a Cylinder
$V=2 \pi r^{3}$, where $r=\left(\frac{V}{2 \pi}\right)^{\frac{1}{3}}$, and $h=2 r$
$S A=6 \pi r^{2}$, where $r=\sqrt{\frac{S A}{6 \pi}}$, and $h=2 r$

Example Three

Determine the dimensions and maximum volume of a cylinder with a surface area of $1884 \mathrm{~cm}^{2}$.

1. Plug in $S A$ * solve for " r ".

$$
\begin{aligned}
& \sqrt{\frac{1884}{6 \pi}}=\sqrt{\frac{6}{6}} \\
& r=\sqrt{\frac{1884}{6 \pi}}
\end{aligned}
$$

$$
r=\sqrt{1884 \div(6 \times 3.14) \text { enter }}
$$

$$
r=10 \mathrm{~cm}
$$

2. Plug in $r=10$ a solve for volume.

$$
\begin{aligned}
V & =2 \pi r^{3} \\
& =2 \pi(10)^{3} \\
& =6283.2 \mathrm{~cm}^{3}
\end{aligned}
$$

3. State the dimensions.

$$
\begin{array}{r}
h \times d, \quad h=2 r \\
20 \mathrm{~cm} \times 20 \mathrm{~cm} \\
d=2 r
\end{array}
$$

Example Four

Determine the dimensions and minimum surface area of a cylinder with a volume of $6400 \mathrm{~cm}^{3}$.

1. Plug in volume + solve for " r ".

$$
\begin{aligned}
& V=2 \pi r^{3} \\
& 6400=2 \pi r^{3} \\
& r=\left(\frac{6400}{2 \pi}\right)^{1 / 3} * \text { Use the radius } \\
& \text { formula. }
\end{aligned}
$$

$r=10.06 \mathrm{~cm}$

On your calculator...

$$
\left.(6400 \div(2 \pi)) y^{x}\right](1 \div 3)
$$

2. Plug $r=10.06$ into $S A$ formula.

$$
\begin{aligned}
S A & =6 \pi(10.06)^{2} \\
& =1907.64 \mathrm{~cm}^{2}
\end{aligned}
$$

3. State the dimensions.

$$
h \times d \quad h=2 r * d=2 r
$$

$$
\text { } \ln \text { n... .. } \ln \text {...... }
$$

Complete: p. 481 \# 1-5 (all).

