How can you tell from a table, a graph and an equation if a relation is linear or nonlinear?

Table -
If the's skip count by a constant, calculate the $1^{s t}$ differences. If $\left.\right|^{\text {st }}$ diff are constant then linear. Graph -
If the line is straight then linear.

Equation -
If degree I then linear.

Determine whether the following relationships are partial or direct.
a) $y=-8 x+0$
b) $y=5 x+10$
direct
c)

e)

partial
d) partial

f)

direct

Identify if the following relationships are linear or nonlinear and explain how you know.
a)
 linear
b)

c) $y=2 x^{2}-7$
d) $y=2 x-7$
non-linear
bloc degree 2
e)

x	y
0	25
1	32
2	35
3	34
4	29
5	20
	-1

non-linear b/c
$1^{\text {st }}$ diff not constant

Determine the slope and y-intercept of the following line.

y - intercept $=4$

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{-2}{4} \\
& =\frac{-1}{2}
\end{aligned}
$$

bloc degree l
f)

linear

Determine the x - and y-intercept of the following line and use this information to graph the line.
a) $2 x+7 y=21$

Maximus Pizza sells their slices of Cheese pizza for $\$ 2$, plus $\$ 0.50$ for each additional topping.
a) Write an expression that represents the cost (C) of a slice of pizza in terms of the number of toppings (n).

$$
\begin{aligned}
& C=2+0.5 n \\
& C=\text { cost of pizza slice } \\
& n=\# \text { of toppings }
\end{aligned}
$$

b) Create a table of values which shows the cost of a slice of pizza with 0-5 toppings, then use this to graph the relationship.

c) Identify the slope and y-intercept from your graph.

$$
\begin{aligned}
& \text { Slope }=m=0.5 \\
& y \text {-intercept }=b=2 \\
& C=0.5 n+2 \\
& y=m \dot{b}+b
\end{aligned}
$$

Homework Review Questions

Section 3.1	p. $147 \# 5 a, 8 a, 10,15$ (just equation)
Section 3.2	p. $151 \# 1$, read over p. 161 and p. $183 \# 2 a$
Section 3.3	p. $157 \# 7,13$
Section 3.4	p. $170 \# 5,6$ and p. $183 \# 6$
Section 3.5	p. $184 \# 9$

