Chapter 6 Review: Investigating Relationships

6.1 - Scatterplots

Example One

State the relationship that exists in the below graphs.

6.2 - Lines of Best Fit

If the relationship between two variables on a graph appears to be linear, a line of best fit can
be draw through the data points

The line of best fit should be drawn such that a similar number of
the line and the distance from each point to the line is minimized
The line of best fit can then be used to determine values of one variable at a given value of the other variable

Example Two
Determine the equation of the line for the scatter plot below.

$y=m x+b$
Slope (m) $\quad y$-intercept

$6=3(29)+b$
$=6-3$
$6=8.7+b$

$=$| 2.919 |
| :---: |
| $=3$ |

$b=2.7$
$=\frac{3}{3^{1}}$
Equation
$y=3 x-2.7$

6.3 -Curves of Best Fit

- If there is a relationship between the two variables on a scatter plot, but the relationship is non-linear, a curve can be used to model the situation.
- As was the case with the line of best fit, the curve can then be used to determine values of one variable at a given value of the other variable.

Example Three

The relationship between the speed of a car and the distance it takes for that car to come to a stop can be seen in the scatter plot below.

1. If it is appropriate, draw a line or curve of best fit.
2. If one exists explain whether the relationship is positive or negative.
3. Use your graph to estimate how much space a car traveling at $60 \mathrm{~km} / \mathrm{h}$ would need to stop.
4. If a car needed to stop in 60 m , what is the maximum speed at which it could be traveling?

6.4 -Reasoning about Data

Scatter plots can be used to either confirm or reject a hypothesis about the relationship between two variables.

Example Four

3. Research suggests that there is a relationship between age and

C vocabulary size for young children.
Explain how the following data can be used to support that statement.

Age (years)	1	2	2	3	3	4	4	5	5	6	6
Vocabulary Size (number of words)	10	450	500	1000	1150	1400	1600	2000	2150	2400	2750

6.5 - Describing Situations from a Graph

Distance vs. Time graphs are often used in physics to describe the motion of an object over time.

- Horizontal lines indicate the object is not moving over a given period of time.
- \quad Sloped lines indicate the object is moving at a constant rate (the steeper the slope the faster the object is moving).
- Curves represent that the object is speeding up or slowing down.

Example Five

Describe the situation in the graph below.

Additional Review Questions

Pg. 374 \#3, 4, 6, 8-10
Pg. 376 \#1-4, 6, 7

